
Student:__________________________  Asst:____________     Page 1
General Programming Assignment Rubric 

Attribute Unacceptable Meets Requirements  Exemplary   Points 
Presentation 

Information Missing Information 
 Properly prepared for 

submission; includes  all names; TA; 
Lab section; Assignment number; Statement 

of Originality 

Nothing missing – purpose & 
program highlights obvious.   

Files Missing files 
 

 All  included: required source, data, 
documentation, script, instruction files 

Nothing missing – clear labeling of 
all parts; readme file includes 

everything needed to run & test 
this program 

  

Submission: > 3 min. :Unable to figure out how to compile & run 
after 3 minutes. 

2-3 min. Takes 2-3 minutes to figure out 
how to compile & run. 

< 2 min. Takes less than 2 Minutes to 
compile; run; test 

Demo: 

Major Problems: Program won't run or crashes 
unexpectedly. Submitted code seems different from that 
demonstrated. Programmers seemed confused by the 

program they were demonstrating. Only one group 
member participated (out of three). 

Minor Problems: Program runs 
reasonably well. Knew what they were doing. 
Submitted code matches demo. One group 

member did not participate. 

Good! Demo went well; major features 
shown and explained. Demonstrators 

clearly understood their work. All group 
members participated. 

  

Presentation Total /6 
Documentation 

Overall Impression Misleading; confusing; too much or too little  A few missing, redundant, or irrelevant 
parts  Accurate; reasonable; easy to read;   

Identifier Names Meaningless or misleading names  Some poor choices. Most identifiers 
explained where appropriate. 

 Meaningful identifier names [some 
single letter names are OK, such as i,j for 
indices]. Explanations of identifiers where 

appropriate. 
  

Indentation; White 
Space 

Misleading indentation; too much or too little white 
space 

 Some inconsistencies; some inadequate 
or wasted space 

 Consistent indentation; good use of 
white space   

External 
Documentation 

No external documentation when some is needed. 
External documentation not useful, confusing, out of date, 

or misleading 

 Adequate external documentation 
[javadoc; user manual, as necessary]. 

Someone else could work with this program 
with a little help from the original 

programmer(s). 

 External doc. as appropriate; [javadoc 
& user documentation where appropriate]. 

Someone else could work with this 
program based on code and 

documentation alone. 

  

Logical Blocks Few or no logical blocks documented  Most logical blocks documented  Documentation for each function and 
loop and logical block   

When Defining 
Classes: Missing class diagrams  Reasonable attempt at class diagrams  Includes some readable form of class 

diagram 
Single Static Class 

or "C" Missing flowchart  Reasonable attempt  Flowchart or other readable 
representation of program flow 

  

Documentation Total /12 
Design 

Implemented what 
was asked. Hardly followed specs; no explanations for deviations  Some deviations  Followed specs (deviations well 

justified)   

Style & Efficiency Poor choices of code; awkward structures  Mostly well thought out; most parts 
reasonably efficient 

 Well thought out; reasonably 
efficient (code & data structures)   



Student:__________________________  Asst:____________     Page 2
Program 

Subdivisions Too many or too few  Mostly reasonable with a few poor 
choices 

 Reasonable subdivisions (classes/ 
functions)   

Flow Confusing; hard to follow  Some awkward or confusing parts  Logical, justifiable structure   
Constants; Magic 

Numbers Magic numbers; hard-coded values  Most constants named & explained  Appropriate use of constants   

Globals Inappropriate use of globals.  Most globals properly justified.  All globals properly justified.   
Initialization & 

Clean-up Uninitialized values; no clean-up  Some uninitialized values; some clean-up 
missing. 

 Good! Reasonable initialization and 
clean-up   

Structure Not clear – blocks do too much or too little 
Reasonable, given degree of 

difficulty of assignment and learner’s 
expected level of experience 

Excellent: creative, logical, well-
delineated with respect to tasks and data   

Design Total /16 
Input / Output / Interface 

Intro / Finish No header or introduction; no obvious end.  Has start & finish.  Good! Has nice introduction; clear 
"sign-off";   

Output (or public 
interface for Class): Output unexplained.  Output readable.  Good! Output is clean and reasonable.   

Input : Interactive 
Programs: 

 Good! Input requirements explained as 
program runs 

Input : "Batch"(or 
'user' interface for 

Class): 

No explanation of input requirements  Minimal explanation of input 
requirements  Input requirements well explained in 

external documentation 

  

Input / Output / Interface Total /6 
Testing / Error Detection / Correction 

Choice of test data Missing test data; poorly tested  Only tested with given data or only 
partially tested 

 Thorough; includes some data not 
given   

Annotation Not annotated; hard to find & follow the testing; 
confusing 

 Reasonably well annotated; fairly 
easy to see & follow the testing 

 Well annotated; easy to see & follow 
the testing   

Endpoints Insufficient: Only one or two endpoints tested  Most endpoints tested  All endpoints tested as appropriate   
Detection; 
Correction; 
Limitations 

Non-existent error detection/ no attempt at 
correction/ unreasonable limitations 

 Mostly reasonable error detection/ 
attempted correction/ mostly reasonable 

limitations 
 Reasonable error detection/ 

correction/ limitations   

Debugging Aids No evidence of debugging aids  Some evidence of built-in debugging aids  Reasonable use of DEBUG flags, 
program tracing and other debugging aids   

Testing / Error Detection / Correction Total /10 

[Rubric One] Style & Design Total:    /50 
 
 


	General Programming Assignment Rubric

