
A Microprogramming Simulator for Instructional Use

J. R. Parker
K. Becker

Department of Computer Science
University of Calgary

2500 University Drive N.W.
Calgary, Alberta, Canada

T2N-IN4

The teaching of computer architecture at a low level is made difficult by the complexity
of the real systems which are used as examples and tools. This paper describes a proces-
sor simulation system which is intended for use at the second and third year undergradu-
ate level for teaching techniques and concepts in the implementation of instruction sets
and microprogramming. The important features of this system are in the user interface,
and not necessarily in the actual processor which is simulated.

The IEEE Curriculum for undergraduate
computer engineering [5], and the ACM cur-
riculum for B.Sc. Computer Science degrees
[6,83 both contain courses on computer
architecture at the elementary level.
Specified as a topic of study is micropro-
gramming and the implementation of com-
puter instruction sets. While the maj.or
differences between discrete logic imple-
mentation and microprogrammed implementa-
tions can be explained in a straightfor-
ward way, the details and the 'flavor' of
creating a new instruction in microcode is
not as easily conveyed. While many modern
machines have microprogrammed instruction
sets, not all of these possess a writeable
control store, and not all are easily
used. Some machines can be damaged by bad
microcode. Most machines with writeable
control store are complex, and most are
expensive. Thus, it is not practical to
allow the average undergraduate student to
directly experience microprogramming on
such machines.

What remains as educational tools in
this area are chip sets, such as the AM
2900, which are, to first and second year
undergraduates, too complex and artifi-
cial. An introduction to a new concept
should involve suitable metaphors, sim-
plifications, and abstractions to convey
the major principles and concepts, rather
than a complete and detailed collection of
facts which, while real and relevant, are
too specific and too many. The result of

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM-O-89791-126-1/84/O02/O069 $00.75

teaching too many details can often be a
student with no grasp of the generality of
an idea or its relationship with other
concepts.

The apparent artificiallity of dev-
ices such as the 2900 lies in the fact
that they are marketed solely as a
microprogrammable chip, with no resident
instruction set. Thus, the microinstruc-
tions take the place of normal instruc-
tions, as on a CPU chip like the Z80, and
microprogramming looks a lot like assem-
bler programming. While microprogramming
actually IS a lot like assembler coding in
some ways, the intent of using a tool such
as this in teaching is to underscore the
differences, to allow the student to
explore the new techniques involved in
microprogramming, and to see the conse-
quences on machine architecture.

Based on the arguments above, what is
proposed is a software emulation of a sim-
plified microprogrammable processor. The
processor should be simple enough that its
structure can be understood after a very
few lectures and labs, and yet it should
provide features suitable for illustrating
advanced concepts in architecture. The
students understand that this is an
explanitory device, and not a real system.
Later, with the skills learned on the sim-
plified system, the more complex 'real'
systems may be mastered more quickly. The
simulator is a metaphor for the concepts
that students consider difficult, and
leaves the actual details for later.

Microtool is a system of programs
intented to assist in the teaching of con-
cepts in microprogramming and computer
architecture. The system provides students
with a facility for writing and executing
microcode without the normal complexities
of dealing with an actual microprogramm-
able CPU with writable control store. In

69

addition, high level debugging tools and
input and output utilities are provided.

Use of this utility is expected to
simplify Junior and Senior level architec-
ture courses, by providing a 'hands-on'
demonstration of many important concepts.
As well, since the system is written in a
high-level language, it is reasonably
portable, and cannot harm or even disrupt
the processor on which it runs. It also
allows large numbers of students to actu-
ally experience microprogramming, without
incurring a large hardware expense or pro-
ducing a contention problem. Many students
can run the system simultaneously on a
multiprocessor (as opposed to a stand
alone real system). This is especially
important at this time, with class sizes
exceeding previous reasonable limits.

The MicroTool (or uTool) system con-
sists of an emulator for a hypothetical
microprogrammable CPU, a compiler for a
'high level' micro language, and a collec-
tion of exercises which illustrate con-
cepts in computer architecture. Students
may write microprograms for the CPU,
either as bit sequences or as symbolic
statements, and then 'run' them on the
emulator. The processor is, of course, a
simplified and somewhat idealized one, to
avoid clouding the relevant concepts.

8 4

The system is based on a processor
described by Dasgupta [7] and also by
Tanenbaum [I], which he calls a "hypothet-
ical host machine", and which will be
referred to as the TIa processor in this
document. This processor was used, rather
than inventing a new one, for a number of
reasons. The most relevant rationale for
the choice was to ensure that a commonly

used textbook was available for use in
conjunction with the system. The reader is
referred to this text for an excellent
detailed description of the processor.

Figure I shows the major processor
components, giving as well the control
points which make up the microstore word.
Micro instructions are 40 bits in length,
and are of two types: GATE instructions,
which move data from a source to a desti-
nation, and TEST instructions, which com-
pare a bit constant against a bit in a
register, and branch to a target micro
address if the bits have the same value.
Figure I gives the format of these two
kinds of instruction.

The micro instructions are executed
by the processor in three subcycles, which
provides a very important temporal separa-
tion between parts of a micro instruction.
During the first subcycle, gates I thru 29
may be opened, permitting data transfers
to take place into the adder. The second
subcycle allows gates 30 thru 37 to be
opened, which allows results from the
adder/shifter to be moved into destination
registers. Finally, subcycle three permits
either the read or write gates (38 or 39)
to be opened, implying that a read or
write operation will take place. Parker
[4] gives a table of data transfers possi-
ble in this processor, and describes in
more. detail the function of each gate.

The microprogram store, or, control
store contains 256 of the 40 bit micro
instructions, which means that eight bit
microstore addresses are needed. The con-
trol store may be written to, which allows
user written microcode to be executed.

The Processor

R A M

30 sl

0 ~ t ," B LJ 8

Figure i -- Th=' HypothQCical CPU

98

J

70

The GATE I n s t r u c t i o n s m

I v l R I I I I I I I I I I I I T - V [7 - 1 [I ,]
~ ~ 8 1 ~ ~ ~ 2 1 ~ t g t B t Y t F t S t 4 1 3 t 2 t I tO g B 7 8 5 4 3 2 I O

Eoch bit of o GATE instruction represents one oF the control points (See Fig. I)
A "t' bit ollows doto to move ocroes o control point, o "0' bit does not.
Bit 0 of eoch mtorolnetruotton Is the opcode - o GATE Inetruotton hoe
on opoode of "I'. Bite SB ond 3g control reodlng ond wrtttn 9 of morn
memory, reepecttvely.

The TEST I n s t r u c t i o n s ,

I Mtorocoda Br~r~h T
Unused Addree9

Test Register

ObJact bit
The TEST mtcrotnstruotion ollows ony bit of certoin registers to be tested.
In any named Field obovg, only one bit moy be non-zero or on error occurs.
The ootion of the TEST instruction is to exomlne the indicoted test register.
to see if the epeciFied bit (The TEST field obove. O-15) is equol to the
the volue of the Object Bit Field (I or 0). If so. o bronch is mode to the
microlnstruction specified by the Microcode Bronch Address Field. IF not,
t h e n the next instruction i n the normol sequence is executed. Opcode For
the TEST inetruotlon is 'O'.

Figure 2 -- T h e Microinstruotton Formots

The Emulation System

The T1a emulator is a computer pro-
gram which simulates the T1a hardware. It
'executes' the 40-bit microinstructlons
one at a time, and permits editing, trac-
ing, and dumping both the 'macro' store
and the control store, and a l l o w s the
e x a m i n a t i o n and m o d i f i c a t i o n o f a l l i n t e r -
n a l m a c h i n e r e g i s t e r s .

The entire system is written in
Berkeley PASCAL[I], and runs on a VAX
11/780 under UNIX. The program itself uses
only standard language features, and can
be easily ported to other systems running
PASCAL. In fact, the system is also run-
ning on an IBM PC, and the effort needed
to make the conversion was minimal.

The emulator reads commands from the
user's terminal, but allows the entry of
microcode and machine code from user-
specified files. All commands are single
word names, possibly followed by parame-
ters which can be either numeric or text.
As well, some commands apply to microcode
only, some to machine code only, and some
to both. In cases where a command may
apply to both micro and machine code, the
micro command name will be the same as the
machine code version, except it will have
the letter 'u' prepended to it.

For example, the dual purpose command
'dump' is used to dump a set of memory
locations. Hence, the command 'udump' is
used to dump a set of control store loca-
tions.

The dual purpose commands consist
mainly of data entry or tracing commands.
They include BREAK, CLEAR, DUMP, ENTER,
LOAD, STEP, and STORE. Single purpose
commands are CHANGE, CONTINUE, DISPLAY,
NOTRACE, PROGRAM, QUIT, RESTORE, RUN, and
SAVE. However, it makes more sense to
group the commands functionally, into
input~output commands, debugging~tracing
commands, and others.

Tracing and Debugging

These commands very often involve
creating, deleting, or using a breakpoint,
or an address (either microaddress or nor-
mal address) where execution will be
suspended. When the program counter con-
tains the address of a breakpoint, the
emulator stops running the current program
and returns to command level. Breakpoints
are set in order to check the current con-
tents of store, values in registers, or to
modify some value. The ability to set
breakpoints is extremely valuable while
debugging microcode (and machine code as
well).

71

The command break (or ubreak) takes
one parameter- the address, either micro
or macro, at which the breakpoint is to be
placed. The emulator then prints out the
address, and asks if it is correct, to
which you may reply 'yes' or 'no'.
Finally, the emulator asks if this is a
tracepoint. A tracepoint is a special
case of a breakpoint, in that when the
tracepoint address is encounted, the emu-
lator will begin to trace the execution of
the user programs by dumping instructions
to the screen as they are executed. The
emulator does not stop executing when the
tracepoint is seen, it simply begins the
trace.

A micro breakpoint lasts until
removed. A macro breakpoint will only
exist until it is encountered and causes a
break; it will then be removed. Tra-
cepoints will, however, exist until
removed.

Breakpoints are removed using the
clear command. One parameter, the address
of t-~e breakpoint, must be given. The
breakpoint (or tracepoint) is then
removed.

After a breakpoint has been seen dur-
ing emulation of user code, the user may
enter commands. One useful one is the step
command, which causes the emulator to exe-
cute the next machine (or micro) instruc-
tion, then stop again. Single stepping
through code is very useful during debug-
ging.

Once a breakpoint is encountered, it
is often desireable to resume processing
from the current state, the continue
statement is used for this purpose. This
command may be entered after a breakpoint
is encountered during program execution.
The result is that the program resumes
executing where it left off. Changes in
the machine registers made with a change
command will be in effect. The equivalent
command for tracepoints is notrace. After
a tracepoint is seen, entering the notrace
command turns off tracing, until another
tracepoint is encountered.

Input~Output Commands

I/O commands cause memory or regis-
ters to be either loaded or saved. For
example, a user may directly enter into
memory from the terminal, either microcode
(in its binary form) or machine code (in
various forms) by use of the enter com-
mand.

For entering microcode, the user is
first asked for the address. Then, the bit
positions in the microword which are to be

SET (ie : I) are entered. Entry ends with
a negative number. Now the emulator stores
the microword, and increments and displays
the next address value, and asks if you
wish to continue. This process repeats
until all words are entered. It is assumed
that words to be entered are consecutive
locations.

For entering machine code, the first
address is entered as above, but code
entry is input as either hexadecimal,
octal, or decimal numbers, depending on
the input mode specified. You will be
asked for the number base, which must be
one of 2, 8, 10, or 16.

The corresponding output command is
dump. This command allows main store or
microstore to be displayed on the screen.
Two parameters, the starting address and
the final address, must be specified. All
of the memory locations between these two
addresses (inclusive) will be written to
the terminal.

It will not be often that microcode
will be directly entered into memory using
enter - it is too slow and clumsy. More
often, we will want to read code from data
files. The load command requires a file
name argument, and this file is expected
to contain the required memory words. In
the case of microcode, this file may be
produced by the MPL compiler. In the case
of machine code, it may be entered by a
text editor, or by a user program.

Store permits saving the current con-
tents o--~ither microstore or main memory.
It requires a file name argument, the name
of the file which will contain the memory
contents. Later, store may be reloaded
from the same file using the load command.
Saving both main store and microstore in
this way requires two separate files. If
the entire processor state, including
tracepoints, breakpoints, all registers,
and all memorys needs to be saved, then
this can be done too. The command save
keeps all of this information on a
called 'utool.SAVE' in the current UNIX
working directory. The machine state may
be recalled using the restore command.
No'te that there is only o n ~ - many
states may be kept only by renaming old
versions of the file. program :

The command program is a unique
feature of the microtool system. It is
used by students to load standard micro-
code and machine code sequences written by
the instructor. The command will request
one integer argument, between 0 and 99.
The integer argument represents a code,
created by the instructor, to identify
assignments, lab exercises, etc. This
allows students to experiment with stan-
dard code sequences before writing their
own firmware. The instructor is free to
change these code sequences at will, and

72

on some systems (such as UNIX) a usage
count for each student may be maintained.
Numbers entered by students which do not
correspond to a real code file cause a
message to the student's terminal.

Quite often during the debugging of
microcode, a 'bad' value finds itself in a
r e g i s t e r . The ' c h a n g e ' command p e r m i t s t h e
modification of processor registers during
program execution. Two arguments are
expected: the first is the name of the
register to be changed, and the second is
the value to be stored in the register.
Legal register names (Upper case only!)
a r e :

A B C D
MBR X MAR IR
PC SP

The Change command is also used to ini-
reasonable values at the outset.

The display command is used to
display all of the machine registers,
probably after a breakpoint.

Other Commands

The quit command terminates the emu-
lation system and causes a return to UNIX
command level.

Run will run the current microprogram
on the current contents of main memory. No
parameters are expected.

The MPL Compiler

The Microcode Programming Language
(MPL) compiler is provided for more con-
venient programming of the T1a processor.
Rather than dealing with individual bits,
fields, and opcodes, mnemonics are used to
specify register transfers, microcode
addresses, and memory access. The syntax
is much like that of an assembler in some
ways, and like a compiler in others. The
compiler described here was inspired by
[3], but includes many new features.

There a r e two basic statement types,
because of the two basic instruction
types. GATE statements consist of one or
more assignments, possibly including sim-
ple expressions. TEST statements yield a
test microinstruction, and include a test
bit and branch address.

A gate statement may be composed of
many individual assignment statements,
because s gate instruction may perform
many simultaneous data transfers. The
general syntax of an assignment is

DEST : SOURCE;
or

DEST = Simple_expression;

A gate consists of some number of transfer
statements, one computational statement,
or both kinds mixed, with only one compu-
tational statement per gate statement. The
gate statement is ended by two semicolons
(;;), so that one gate statement may span
many lines.

Destinations and sources are speci-
fied as key words, representing T1a regis-
ters or operations. Registers, etc. may be
written in either upper or lower case.
Possible destinations are:

A,B,C,D A thru D are 16
bit registers.

X The X register.
MAR Memory Address

Register
MBR Memory Data

Register.
IR Instruction

Register.
PC Program Counter.
SP Stack Pointer.
memory Main store.

The T1a processor has a simple
arithmetic-logic unit (ALU), which per-
forms simple additions, complements, and
shifts. As well, there are constants
stored in internal registers wich can be
used in computations. Constants available
a r e :

1 - A 16 b i t r e g i s t e r ,
= integer I.

0 - 16 bit integer zero.
-I - 16 bit two's complement

sign 16 bit register, only
the sign bit is set.

15 - The integer constant 15.

A simple expression takes the general
form :

shift_op (sourcel + source2)

The operator 'shift op' may be absent or
may be one of eTther 'shift left' or
'shift right' In any case, the- addition
indicated would be performed, followed by
a shift of only one bit in the specified
direction.

The source operands above may simply
be constants, registers, or may be a com-
plemented constant or register. The one's
complement of register A is written

complement (A)

To shift the A register left one bit, we
would enter :

73

A : shift left (A + 0);;
/ Sets 4? 13, 33 /

The procedure for accessing main
memory is fairly simple. The address for
a memory read operation is always placed
in the MAR prior to the read operation
being started. The result of the read is a
16 bit memory word, which is placed in the
MBR. Remember that reads and writes are
performed during subcycle 3 of the micro-
sequence, and so the address can be moved
to the MAR during the same micro instruc-
tion.

A memory read could be written as :

MBR= memory (MAR);;
or 8S :

MBR: memory;;

since the use of the MAR is understood.
MBR must, however, always be the destina-
tion of the read.

Any MPL statement may be preeeeded by
one or more labels, which are symbolic
names representing the address in micro-
store of that statement. For example, :

lab1:
tst1: MBR: memory;;

Here, 'lab1' and 'tst1' represent the same
location in microstore. Later, these names
may be the object of a branch.

Labels need not be defined before
they are used, but all labels must be
defined somewhere in the program.

When it is necessary to branch to a
particular microinstruction out of the
normal sequence, then a test statement
would be used. There is always a condi-
tion involved, which is expressed as the
equality of a bit constant (I or 0) with a
specified bit in a particular register. If
the two are equal, then the branch will be
made; otherwise, the next instruction in
the control store will be executed.

The general syntax is

if <bit expression>
then goto <microaddress> ;;

The keywords 'then' and 'goto' are always
optional, and either, both, or neither may
be present.

The general form of a bit expression
is

bit (register, bit-number)
: bit-constant

where :

bit-number is a constant between
0 and 15.

register is one of A,B,C,D,
MBR, X, IR, or 0.

bit-constant is 0 or I. If omitted,
I is assumed.

In any place where a comma (,) is
seen, the key word 'of' may be used. All
equal signs (=) may be replaced by the key
word 'is'. All parentheses may be omitted,
and extra ones are ignored.

All of the following bit expressions
test bit number 14 of the instruction
register to see if it is set (=I) :

bit (14, IR) = I
bit (14, IR)
bit 14 of IR is I
bit 14, IR is I
bit 14 of IR
bit ((14)of(IR)) is ((I))

There are obviously many forms possi-
ble for the same test statement. It is
assumed that individual programmers will
adopt a convention.

Often a simple unconditional branch
instruction would be useful. There is no
such instruction in our processor, but the
MPL compiler can construct one. The GOTO
statement is a variation of the test
statement, where the intent is to branch
unconditionally to a destination address.
The condition used is to test any bit, say
bit number 0, of the zero register, which
has all bits set to 0, against the con-
stant bit 0. This always results in a true
condition, and therefore will always
result in a branch. The test statement
would be :

if bit (0, O) = 0
then goto <dest>;;

where <dest> is some label. In MPL, this
can be shortened to

goto <dest>;;

An Example MPL Program:
A stack machine.

Here, a simple stack machine is writ-
ten in T1a microcode. There are only six
instructions, which are:

74

Opcode Instruction Description

000

001

100

101

110

111

PUSH the low 13 bits of the
instruction

POP the top stack value into
the A register.

ADD the top two stack values,
result on top.

SUBtract the second-from top
value from the top value,
result on top.

STOre the (Top-l) value into
the memory location given
by Top.

GET the contents of the
address given by the top
of the stack, result goes
on Top.

The opcodes occupy the top 3
bits of the word. The code for this
instruction set could be written in
many ways, and the sample solution is
not guarenteed to be optimal in any
sense.

The solution is given in Figure
3 as an MPL compilation listing.
Points to note are, first, that the
code written above for the FEC is
used without modification, and
second, that the execute portion of
the fetch-execute cycle must first
decode the instruction opcode to
determine which instruction to exe-
cute. this decoding .is performed
bit-by-bit, a limitation enforced by
the architecture of the micro
machine.

A coding sheet has been devised
for use as a guide for beginning students
coding in binary. It is also useful as a
reminder of the fields, transfers, and
formats found in the T1a processor. More
advanced students will probably write
their micro programs in MPL, or some other
higher level representation, but it is
probably instructional for students to
write their first few microprograms in
machine format.

Figure ~ shows an audited session
with microtool. The session shows how to
load both control store and main memory,
illustrates the dump formats for both
memories, and shows how to dump the regis-
ters. Note that the example is still the
stack machine. A breakpoint is set at the
last executable address in main store, and
the program is run- the result is that the
program stops after executing the last
instruction. Since there is no proper
'halt' instruction, this is the suggested
method of halting a program.

References

[I] Joy, W.N., Graham, S.L., Haley, C.B.,
"Berkeley PASCAL User's Manual Ver-
sion 2.0", Oct. 1980.

[2] Andrews, M., "Principles of Firmware
Engineering in Microprogram Control",
Computer Science Press. 1980.

[3] Tannenbaum, A., "Structured Computer
Organization", Prentice-Hall, 1976.

[4] Parker, J.R., "The Microtool Proces-
sor Emulation System", University of
Calgary Computer Science research
report number 82/110/29, January
1983.

[5] IEEE Education Committee (Model Cur-
riculum Subcommittee of the IEEE Com-
puter Society), "A Curriculum in Com-
puter Science and Engineering", prel-
iminary version. Pub. EH0119-8 Jan.
1977.

[6] ACM Curriculum Committee on Computer
Science, "Curriculum 68 - Recommenda-
t ions fo r Academic Programs in Com-
puter Science", CACM Vol. 11 Number
3, March 1968.

[7] Dasgupta, D., "The Organization of
Microprogram Stores", Computing Sur-
veys, Vol. 11 Number I, March, 1979.

[8] ACM Curriculum Committee on Computer
Science, "Curriculum Computer Sci-
ence", CACM, Vol. 22, No. 3, March,
1979.

75

(a u d i t > u t~o l

0 . 0 +: uload mpl. out
I : : C o n t r o l e t o r e l o a d e d , 255 wo rds .

0 .0 +: udump 0 I0

A d d r e s s M i c ~ o c o d e Wo~d
I l I t 0

.

• O> 0100000000000000000010000000000000000001 OATE i n s t r u c t i o n .
(I> 0000100000000000010000000100000000001001 DATE i n s t r u c t i o n .
(2> 0000000000101111000000000000000010000000 TEST i n s t r u c t i o n ~ GoTo 11
• 3> 0000000000000010100000000000000010000000 TEST i n s t r u c t i o n , OoTo 0
(4> 0000000000100010010000000000000010000000 TEST i n s t P u c t i o n , GoTo 8
< 5> 0000010000000000000000000100000000000101 GATE I n s t r u c t i o n .
(&> 1000000000000000000100000000000000000001 GATE i n s t r u c t i o n .
< 7> 0000000000000000000000000000001100000000 TEST i n s t r u c t i o n , GoTo 0
• 8> 0100010000000000000100000001000000000101 GATE i n s t r u c t i o n .
(9> 0000000000000000100000000000000000000001 GATE i n s t r u c t i o n .
C lO>

Dump OP a l l T l a Regis ters

R e g i s t e r V a l u e Contents
Octal Decimal Octal Decimal

.

A O 0
0 0

C O 0
D 0 0
MBR 0 O
X 0 0
IR 0 0
Z e r o 0 0

PC 0 0 10 10
SP 21 17
MAR 0 0 I 1

0 H ic~oPC :
M i c ~ o I R :

0000000000000000000000000000001100000000 TEST I n s t r u c t i o n , goTo 0 0300000000000000000000000000000000000000 TEST I n s t e u c t i o ~ , GoTo O

O. 0 +: l o a d t e m p i 0
I : : M a i n s l o p e l o a d e d ~wom 0 t o 15

0. 0 +: dump O t&

[O] l
(11 3
C 21 32768
£ 3] 7
£ 4] 32768
[5] 5
[63 40960
[71 0
[8) 49152
[9] 0
[I0] 5734~
[11] 0
(12] 57344
C 131 32768
[14] 0
(15] 49152
[16] 0

0 . 0 +: c h a n g e SP 17
I : : SP is s e t to 17

8 , 0 +: b~eak 17
G : : Confirm 9veakpoin t a t a d d t e l s 17 geS Op no : ~eS
0 : : I s t h i s a T ~ a c e P o i n t (~es o~ n o) ; no

O, 0 +: d i s p l a g

O. 0 +: ~un
I : : Macro bPeakpolnt a t 17

4896.7 * : dump 0 2

[O] : 12
C 1] : 3
[23 : 32768

4896.7 +: d i~ple~

Dump o~ a l l T la R e g i s t e r s

R e g l s t e ~ Value Contents
Octal Decimal Octal Decimal

.

A 6 6
B 0 0
C 0 0
D O 0
MBR O 0
X O 0
IR 0 O
Z e r o 0 0
PC ~1 17 O O
SP 21 17 0 0
MAR 20 16 0 0

Mic~oPC : 2
MicPoIR :

Micro He~
Address Contents

< O> 4000080001
< 1> 0800404009
• 2> O00BO00080
• 3> 0002800080
< 4> 0 0 1 2 4 0 0 0 8 0
< 5> O000000000

5> 0400004005
C 6> 8000100001
• 7> 0 0 0 0 0 0 0 3 0 0
• 8> OOOO00OOO0
• 8> 0000100001
(8> 4400101005
< 9> 0000800001
< 10> 0 0 0 0 0 0 0 3 0 0
(11> OOOOOOO000
• I I > O000000OO0

11> 002E800080
• 12> 0032400080
< 13> OO0000OO00
• 13> 0000100001
< 13> 440010100~
• 14> 0000800001
• 14> 4000900001

15> 0000100001
• 15> 9000108011
(16> 0000000300
(17> OOO0000000
< 17> 0000100001
(17> 4400101005
(18> 0000800001
(18> 4000900001
(19> 0210008011
(20> 9000004011
• 21> 0 0 0 0 0 0 0 3 0 0
(22> O000OO0000
< 22> O05AqOOOSO
< 23> O00000000O
(23> 0000100001
(23> 4400101005
(24> 0 0 0 0 4 0 0 0 0 1
(24> O0005COOOl
< 24> 4400501005
(25> O000OO0000
(25> 8000200001
• 26> 0 0 0 0 0 0 0 3 0 0
< 27> 0000000000
(27> 4000100001
< 28> 0000400001
< 29> 4000200001

30> 8000100001
(31> 0000000300

0000100000000000010000000100000000001001 GATE I n s t r u c t i o n .

4 8 9 & . 7 +: q u i t

L ine Statements
Numbe~

1: f e c : ma~ = pcJ mb~ = memo~g(ma~)~*
~: i r = mb~; pc pc + I ; ;
3: i~ b i t (15o i t) then goto a r i t h o p s ; ;
4: iP b i t 114, i t) then goto Pec;~
~: iF b i t (1 3 . I t) then g o t o pOpi~

7: push : sp = sp ÷ 1 ; ;
8: ma~ = sp ; memorg : m b r ; ;
9: goto F e e ; ;

10:
11:
12:
13:
14:
15:
lb :
17:
18:
19:
20:
21:
22:
23:
24:

26:
27:

29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:

50:
51:

I * Fetch nex t t a r g e t i n s t r u c t i o n * I
I * Move i n s t e to PC++ * I
/ * Decode opcode * /

pop: ma~ = spJ sp = sp ÷ (- 1) ;
mb~ = memorMJJ
a = m b ~ ; ;
goto Fec ;J

a r i t h o p s :
i F b i t (1 4 , i T) = 1 t h e n g o t o memops ; ;
i F b i t (1 3 , i t) = I t h e n g o t o s u b ; ;

add: mar = sp~ sp = $p ÷ (- 1) ;
mbr m e m o ~ q (m a r) ; ; / * Pop i n t o mbr * /
a = mbr; mar = sp;
mb~ = memo~g(ma~);; / * Top i n t o mbr * /
mar = sp; mb~ = a + mbr;
memory(mar) = mbrJ; / * Top = sum * /
g o t o F e e ; ;

sub: mar : sp ; sp ~ sp + (- 1) J
mb~ m e m o r g (m a r) ; ; / ~ Pop i n t o mb~ * /
a : mb~; mar : sp;
mbr = memor~ImarlJ; I * Top to mbr * I
a = complement(a) + mb~;; / * S u b t r a c t * /
mb? = a + 1; memorg(mar) = mbr;J / * r e s u l t to top * /
9oto PecJ ;

memops: iF b i t (1 3 , i ~) = 1 then goto g e t ; ;

s t o : me t = sp; sp = sp ÷ (- 1) ;
mhr = memor~(ma~);; / * Pop * /
i~ = mbr~ mar ~ sp~
sp = . s p + (- 1) ;
mb~ = memorg (ma~);; / * ZR = top, pop aga in t /
mar = i t ;
memoTg(ma~l = mbr;; l e PerForm the s t o r e * /
goto Fee;;

get: mar = sp; mbP = memorg(ma~);; / * Get t o p * /
i r = mb~i;
ma~ = i t ; mhr = memorg(ma~};; / * Read the data * /

ma~ = spJ memorg(mar) = mb~J; / * Onto top * /
9 o t o FecJ~

F i g u r ~ 3 - - M P L L i ~ t i n 9 o F S t o c k M o o h i m e

76

