
Abstract

Two approaches to teaching Computer Science are com-
pared, using two sets of assignments given to distinct
CS102 lecture sections during the same semester. The com-
plexity and effort represented by the solutions is compared
using software engineering metrics, giving a measure of the
effectiveness of the two assignment sets.

Keywords

CS102, computer science instruction, constructivist learn-
ing

1 Introduction

Constructivism is a learning model that is becoming very
popular in post secondary institutions in North America. It
maintains that learning must be active, and is not just about
the discovery of facts [13,3,4]. Teachers must guide the
learners in the construction of mental models. Constructiv-
ism is about helping the learner construct a viable model,
and the guidance is based on the individual learner’s cur-
rently existing cognitive structures. One practical way of
introducing constructivist methods into a program is to
introduce an experiential learning component.

The University of Calgary has, for the past three years, been
encouraging the incorporation of an experiential learning
component in all of the undergraduate programs. In the
Winter session of 2002 an unfortunate situation developed
that allowed the Department of Computer Science to test
the efficacy of this strategy, at least in part. Because of an
administrative problem, different sections of the same
course - Computer Science 233, equivalent to the ACM
CS102 course - were allowed to proceed individually, with
no coordination of assignments, lectures, or exams. This

was unfortunate, but it did allow us to conduct a simple
comparison of the methods used in the two courses; specifi-
cally, the assignments given to the students will be assessed
and compared.

Students submit their assignment solutions using an on-line
submit program, and this allowed us to collect all of the
submissions as they were made. The intention was to use
standard software engineering complexity metrics to deter-
mine how complex the solutions were, and to compare this
between the two distinct lecture sections. Solutions that
reflect a high degree of sophistication, complexity, and
effort represent a better educational experience, at least
according to most learning models. Learning to program is
learning to construct mechanisms and explanations[17]; the
hard problem for novice programmers is not in the con-
structs of a language, but in putting the pieces together. Stu-
dents need to be taught about typical solutions to problems
and strategies for using them.

In the remainder of this paper we discuss two educational
models represented by the two sets of assignments: the
behaviourist model and theconstructivist model. First, pre-
vious work in this area is summarized. The assignment sets
we used are then described, and the measures applied to the
solutions are explained in detail. Finally the results of the
measurements are given, and the conclusions supported by
the results are presented.

2 Related Work

There appears to be very little previous work [5,6] that
involves a complexity analysis of assignments in the way
that is being done here. There is a body of work on the use
of constructivism, its nature, and its advantages and disad-
vantages (E.G. [1,16]). There are other learning models,
and a body of literature concerning each one. We are, of
course, primarily interested here in learning models in
Computer Science education and their relationship to pro-
gramming assignments.

2.1 Making Quality Count in Undergraduate Education

Romer[15] establishes that expectations should be high, but
attainable, and should be clearly communicated at the start.
It is important that attainability be extended to the vast
majority of the students, and not just the top few percent.

A Comparison of Constructivist VS Behaviourist Assignment Sets
for CS102

J. R. Parker
Digital Media Laboratory

Department of Computer Science
University of Calgary

2500 University Dr. N.W.
Calgary, Alberta, Canada T2N 1N4

1 403 220 6784
parker@cpsc.ucalgary.ca

Katrin Becker
Computer Science Education Group
Department of Computer Science

University of Calgary
2500 University Dr. N.W.

Calgary, Alberta, Canada T2N 1N4
1 403 220 6784

becker@cpsc.ucalgary.ca

The first year is critical for student success, and we should
respect the diverse learning styles of the students from the
outset. He maintains that students must be able to synthe-
size experiences from different contexts in a single prob-
lem. There must also be opportunities for collaborative
learning, and the students must have out of class contact
with faculty[1,16].

2.2 Simulations, Games, and Experience based
Learning

Important modern approaches to teaching focus on increas-
ing the student’s control and autonomy. Experience based
learning is an aspect of constructivism that accomplishes
these things, and often has a straightforward implementa-
tion. Something said by B. Ruben especially strikes
home[16]:

“If we hold too closely to the idea that effective
education happens only when the learner learns
what the teacher teaches, this can lead us to think
that creativity is an error”.

We believe that creativity cannot be taught, as much as it
can be permitted, encouraged, identified, and rewarded. It is
easier to be creative when the task is clear, but not restric-
tive, and when the domain of the task is clearly understood.
An accounting system would be a terrific programming
assignment if accounting were a popular hobby among six-
teen to twenty year-olds.

A comparison has been done that involves business-type
assignments VS game projects for intermediate program-
ming classes [6]. The same instructor taught all classes,
which involved programming in Visual Basic. The games
assignments were simple board games (E.G. Monopoly),
while the business assignments involved implementing a
student planner or an automotive dealer vehicle purchase
system. Using simple complexity measures such as lines of
code (LOC), the game assignments were seen to be signifi-
cantly more complex, and involved 80% more code, on the
average, than the business assignments.

Two of the six constructivist assignments presented below
involve programming a game. There are a number of
advantages to this [5], including that games are easily
understood domains, are inherently visual and event driven,
can be tested easily, and are scalable. Other work has been
done on the use of games as assignments [2,6].

2.3 An Objective Evaluation Strategy

Most of the assessment methods described above involve a
subjective evaluation - examination results and surveys, for
example. Objective results are much more difficult to
obtain. One could use a standard test on the two classes,
both before and after the course, and use the increase in test
score as a measure of educational success. This is a trifle
goal/fact oriented, but is moot in any case as no such exam
was given. In any case there would be ethical issues in
experimenting with a class in this manner.

The method proposed here is to use perceived effort as a
measure of success. Assuming that the assignment grades
in both classes are more or less equivalent, a hard thing to

say objectively given that the assignments were different
and were graded according to various criteria, then the
assignments that involved the largest amount of work or
effort should be an indicator of how much was learned. The
simple argument is that more effort to achieve a similar
grade implies either that more material was mastered or that
the assignment engaged the students more thoroughly. This
is consistent with existing practice [9,15]. In the latter case,
more material was covered, whether or not it was evaluated
and incorporated into the final grade. Students must learn
problem solving skills, to construct new solutions for them-
selves.

For programming assignments in Computer Science, the
source code submitted can be examined and measured for
various numerical complexity values. These are objective
measures of program complexity, which can be converted
into measures of effort.

3 Behaviourist Model

The behaviourist approach focuses on observable behav-
iour, seeking to change it. In its crudest form, Behaviorism
examines the way people react to a stimulus. For example,
if a teacher gives a high grade, the belief is that the student
is learning and doing well. If a low grade is given, then the
belief is that the student is not learning.

There is an associated belief that the environment, rather
than the learner, determines what is learned. The teacher’s
role is, therefore, to arrange the environment to elicit the
desired response. The manifestation of this approach would
centre on behavioural objectives, such as competency based
education.

3.1 The Behaviourist Assignment Set

The following assignments are presented in the same order
in which they are encountered by the students.

There are approximately 87 individuals submitting assign-
ments in this group.

Assignment 1 - Student Grades

This requires the student to write a program that reads in
percentage grades and prints corresponding letter grades.

Assignment 2 - A Point class

Create a class that represents a point in a two dimensional
Cartesian coordinate system. Must have specificset andget
methods, andmove, distance, andpointID. The number of
active instances are counted, and the class must be tested.
The program structure is described in detail.

Assignment 3 - Class extension

Create subclassesshape, rectangle, circle, andtest from
thepoint class defined in assignment 2.

Assignment 4 - Mortgage Calculator

Using Swing to create a GUI, write a program to enter the
number of payments, principal, and interest rate and com-
pute results of interest such as the total monthly payment,
total interest paid, and the amortization in years.

Assignment 5 - Greenhouse simulation

Simulate a greenhouse having sensors for temperature,
humidity, and soil moisture. Devices (air conditioner, fur-
nace, sprinklers) can be turned on or off. Uses threads and a
GUI to simulate a period of time in the greenhouse and con-
trol of the devices.

3.2 Why are these assignments behaviourist?

It is not only the nature of the assignments that indicates
behaviourism but the manner in which they are presented.
In most cases the assignments are specified in great detail,
giving methods, their names and parameters lists, and their
functions. Very little room is given for enhancement or
individual initiative.

These assignments are each designed to mimic a specific
tiny application that is fully understood. The student is to
replicate the instructor’s solution to achieve top marks.
Assignment number 5 is the nearest thing to a constructivist
assignment, but even here the nature of the question - which
specifies all methods, their functions, and their detailed
implementation - is behaviourist.

4 Constructivist model

The constructivist approach is centred on how meaning is
constructed by a student. Learning is thought to be an inter-
nal cognitive activity - students construct knowledge (mod-
els) from their classroom experience. The teacher’s role is
to facilitate and negotiate meaning, rather than to dictate an
interpretation. The University of Calgary’s recent focus on
experiential learning in the undergraduate program is pre-
cisely in tune with this model.

4.1 The Constructivist Assignment Set

In each case the assignment specification describes three
versions: A, B, and C. In most cases the different versions
represent progressive levels of complexity: the B-version
does everything the C-version does with some embellish-
ments. This means that each increasing level involves more
code (i.e. a more complex solution). Progressive levels
require progressively more functionality.

This is not necessarily the case in the behaviorist set as
grading is based largely on the presence or absence of spe-
cific constructs as well as a subjective assessment of that
component by the marker.

Bonuses and challenges are credited differently from the
main part of the assignment. This is done for several rea-
sons. It separates the requirements for an ‘A’ from embel-
lishments suggested in order to challenge the better
students. It ensures that high grades remain attainable by all
while encouraging excellence in those better equipped. It
avoids the implication that all students should be willing or
able to rise to the challenges. There were approximately 45
individuals submitting assignments in this group.

Assignment 1 -- Transition

This task allows students to familiarize themselves with the
new language. They are given a small program [approxi-
mately 1-200 lines of code] in the language they already

know (Pascal), and asked to re-write it in Java. Proper OO
design is not emphasized. An implementation of a simple
calculator is used.

Assignment 2 -- First Class

Students are to design and implement a class that serves as
an enhanced version of a data type that was used in the pre-
vious program. This allows them to create a new class and
incorporate it into already existing code. Specifically, they
were to replace the integer type with a Big Number class
that supports integers at least 15 digits long.

Assignment 3 -- Encapsulation; Simple Data Structures

Write an ACSII-graphics version of the Four Seasons Soli-
taire game. Emphasis is on stacks and queues; encapsula-
tion of objects; menu-driven design.

Assignment 4 -- Parsing

Design and write a recursive parser for expressions. It must
read and parse the expression, convert it into polish postfix,
and then evaluate the postfix form using a stack. Parser is
implemented from formal definition using BNF and syntax
diagrams. Includes UML documentation.

Assignment 5 -- Inheritance

Design and implement an ASCII-graphics version of the
Centipede arcade game. Turn based. Graphics implemented
using ‘easycurses’ support class.

Assignment 6 -- Encryption in C

Implement a simple Caesar cipher in C.

4.2 Why are these assignments constructivist?

These assignments can be seen to actively engage the stu-
dents, a key feature of constructivism. Based on Wheatley
[18], who describes a problem-centred approach that is
directly applicable, tasks (assignments) should contain the
following ten attributes:
1. Be accessible to everyone at the start - all of the assign-
ments have multiple levels so that even below average stu-
dents have achievable goals.
2. Invite students to make decisions - the design is not com-
pletely specified.
3. Encourage “what if” questions - the question asked can
be extended by the students.
4. Encourage students to use their own methods - rarely is
the method specified in this assignment set.
5. Promote discussion and communication - the open nature
of the problems encourages discussion, sometimes con-
ducted in the labs.
6. Be replete with patterns - design patterns are discussed,
but students are not limited by them.
7. Lead somewhere - the goals are clear and easily demon-
strated.
8. Have an element of surprise - especially in graphical out-
put, surprise is inevitable. Games have a random compo-
nent as well.
9. Be enjoyable - the students claim it is so.

10. Be extendable - the assignment specification is essen-
tially open ended.

It can be seen that this assignment set does satisfy all ten of
the above attributes.

5 Measurement of Assignment Complexity

All of the solutions to all of the assignments were saved,
and after the semester was over they were evaluated. All
solutions were written in Java, and so the tools used to con-
duct the evaluation had to work with this language. One
tool was written specifically for this work. It parsed the
Java programs and collected counts of symbol usage so that
the more complex metrics below could be computed.
Essentially, counts of operators and operands were made so
that an estimate of programming effort could be made.

What follows is a description of the metrics computed for
all of the assignments from both sections of Computer Sci-
ence 231. We chose the commonly encountered Halstead
metrics[8], precisely because they are commonly encoun-
tered. These measures apply to systems that are working
and to development efforts after coding is finished, which is
certainly the case in this instance. Halstead measures first
appeared in 1977 and have been the subject of experimenta-
tion and assessment ever since. They are some of the oldest
measures of program complexity. These metrics are based
on the simple measurements:
n1 = the number of distinct operators
n2 = the number of distinct operands
N1 = the total number of operators
N2 = the total number of operands

The remaining values below are calculated using the mea-
surements above.

N: This is a measure of program length in terms of the num-
ber of tokens used by the program. It is calculated as

N = N1 + N2

Length: Thelength is a relationship between the token length N
and the vocabulary n. It is defined as:

N = n1 log(n1) + n2 log(n2)

Vocabulary: This is the number of distinct symbols used in the
definition of the program. It is defined as:

n = n1 + n2

Lines of Code (LOC): This is a very simple measure, and is quite
intuitive. As counted in the real code it is hard to decide some
details. Do we count comments? Is there empty space?
Obfuscated code can have very few lines.

This metric is computed from the number of tokens in the
program, and presumes that there should be, on the average,
3.14 tokens per line:

Effort: Halstead defines effort as the total number of elementary
mental discriminations. Details can be found in Halstead’s book,
but suffice to say that this number is an accepted measure of

program difficulty.

Programming Effort is calculated as

E = V/PL

where the symbol V represents a quantity namedprogram
volume, an estimate of the volume of information required
to specify a software program; and the symbol PL is the
program level, a measure of the relation between the vol-
umes of the most compact representation and the actual
program.

PL = 1 / ((n1 / 2) * (N2 / n2))

V= N * (LOG2 n)

Time to Code: This is an estimate of how long it would generally
take to write the program. This measure correlates very well with
the actual measured time to write programs, and is also an
established measure of program difficulty or effort needed to write
a particular program.

This measure is a function of the programming language
use. For Fortran, the programming time T is computed as

T = E/K

where the constantK depends on the language. For the Java
language the constant 0.9 was used; this was estimated by
computing the effort for a sample set of programs for which
the programming time was known.

6 Evaluation of assignment sets

There were five behaviourist assignments to be completed
in the winter semester of 2002, during which time six con-
structivist assignments were completed. In most cases we
compute the mean value of a metric per assignment, as well
as the total for the semester.

The most simple measures of complexity deal with simply
the number of tokens, of various sorts. Mostly the number
of operands is the deciding factor, increasing the complex-
ity of the constructivist set to the point where it has almost
twice the measured complexity of the other set. Here is a
summary of what was measured in the actual student
assignments, averaged over all assignments.

Number of tokens N: Constructivist = 481.1,Behaviourist
= 368.6.
Vocabulary: Constructivist=533.8, Behaviourist=315.4.
Length: Constructivist=4846.4 (total=29,078.5), Behav-
iourist=2556.2 (total=12,780.8).
LOC: Constructivist=153.2 (total=919.3), Behaviour-
ist=117.4 (total=586.9).

The other, derivative, complexity measures tell a definitive
tale.

Effort (Median)
Assignment Constructivist Behaviourist

1 9178.4 15946
2 18316 10102
3 29045 7669.9
4 22018 11427
5 40438 22972
6 30466

Unbiased mean 24,910 13,623

LOC N
3.14
----------=

Total Effort 149,461 68,117

Time (to code, median)
Assignment Constructivist Behaviourist

1 2.8328 4.9215
2 5.6531 3.1178
3 8.9647 2.3672
4 6.7956 3.527
5 12.481 7.0902
6 9.403

Unbiased mean 7.69 4.20
Total Time 46.13 21.02

We think of the metrics above as measures of work done, or
effort. Again, the constructivist set is nearly double the
effort of the behaviourist set on a per assignment basis. It is
more than twice the effort overall during the semester.

7 Conclusions

The constructivist assignment set appears to be, on the
average, about twice as much effort as is the behaviourist
set. We would expect that the students who completed this
collection would be better prepared for subsequent pro-
gramming courses, a hypothesis that we propose to test
over the next few years. Specifically, in the case of assign-
ment 1 the behaviourist assignment is more complex than
the constructivist. This is bourn out by all of the other mea-
sures evaluated.

All of the other metrics favour the constructivist set as
being more complex and requiring more effort. What will
be attempted next is to follow the performance of the two
groups of students through the next year, to try to see
whether there is a trend in their performance. Does the
completion of either of these assignment sets predict a
superior performance in future courses?

8 Acknowledgments

We thank D. Walters at the U of C Computer Science
Department for conducting the measurements on the
assignments, and K. Barker and L. Manzara for providing
resources and data.

9 References
[1] D. H. Andrews and L. A. Goodson, A Comparative

Analysis of Models of Instructional Design, Journal of
Instructional Development. 3:(4) , 1980. Pp 2-16.

[2] K. Becker, Teaching With Games: The Asteroids! and
Minesweeper Experience, Journal of Computing in
Small Colleges, Vol. 17 No. 2, December, 2001. Pp. 22-
32.

[3] M. Ben-Ari, Constructivism in Computer Science Edu-
cation, Journal of Computers in Mathematics and Sci-
ence Teaching, 20(1), 2001. Pp. 45-73.

[4] R. Crawford, Teaching and Learning IT in English State
Secondary Schools - Towards a New Pedagogy, Educa-
tion and Information Technologies, 4, 1999. Pp 49-63.

[5] B. Dobing and D. Erbach, Building Games as Program-
ming Projects, Proc. 14 Annual Conference of the
International Academy for Information Management,
Charlotte, N.C., 1999. Pp. 298-302.

[6] B. Dobing and D. Erbach, A Comparison of Business
and Game Projects for the Intermediate Programming
Classes, Proc. 16 Annual Conference of the Interna-
tional Academy for Information Management, New
Orleans, LA., 2001. Pp. 287-296.

[7] Valerio Franceschin, Complexity -- Software Metrics,
http://sern.ucalgary.ca/Courses/cpsc/451/W02/Com-
plexity.html

[8] M. H. Halstead, Elements of Software Science, New
York, Elsevier North-Holland, 1977.

[9] D. L. Kirkpatrick, Techniques for Evaluating Training
Programs, Training and Development Journal, June,
1979. Pp 178-192.

[10]K. C. Lee, JavaNCSS - A Source Measurement Suite
for Java, http://www.kclee.com/clemens/java/jav-
ancss/

[11]R.K. Lind and K. Vairavan, An Experimental Investiga-
tion of Software Metrics and their Relationship to Soft-
ware Development Effort, IEEE Transactions on
Software Engineering, v15, p649(5), May 1989.

[12]McCabe, Complexity Measure, IEEE Transacions on
Software Engineering, Volume 2, No 4, pp 308-320,
December 1976.

[13]S.B. Merriam and R.S. Caffarella, Learning in Adult-
hood: A Comprehensive Guide (2nd Ed), Jossey-Bass,
San Francisco, 1999.

[14]G. Miller, The Magical Number 7 Plus or Minus Two:
Some Limits on Our Capacity for Processing Informa-
tion, Psychological Review, 63., 1957. Pp. 81-97.

[15]R. Romer, Making Quality Count in Undergraduate
Education, Denver Education Commission of the
States, 1995.

[16]B. D. Ruben, Simulations, Games, and Experience-
Based Learning: the Quest for a New Paradigm for
Teaching and Learning, Simulation and Gaming, Vol
30, No. 4, Dec, 1999. Pp. 498-505.

[17]E. Soloway, Learning to Program = Learning to Con-
struct Mechanisms and Explanations, Communications
of the ACM, Vol. 29, No. 9, Sept. 1986. Pp 850-858.

[18]G. H. Wheatley, Constructivist perspectives on science
and mathematics learning. Science Education 75 (1),
1991. Pp. 9-21.

