

Why Care?

• If we are going to claim that a course is inquiry-based then we have a responsibility to deliver it in this form. [accountability]

Our numbers are dwindling, this approach has a chance of attracting and retaining good students.[recruitment & retention]

It's just teaching, isn't it?

- Most people have particular styles with which they are more comfortable.
- DO NOT attempt to teach using a style you don't/can't support.
- If your style is cognitive, then don't teach an inquiry course unless you are willing to learn more about how it's done.

Where does Inquiry Based Learning fit? →

Disclaimer

This talk is NOT inquiry-based, even though people are welcome to ask questions.

This talk is NOT constructivist, either.

What is constructivist?

Main Learning Theories

- Behaviourist
- Cognitive
- Case-Based
- Brain-Based
- Constructionist

Few are "pure".

There exist many variations.

Behaviourist

<u>Tell</u> them about it; test them on it; reward them; show stimulus – get response

- This is the most common style in our department.
- In some cases it is the most efficient and effective way to get the material across.
- This talk is essentially behaviourist.

Cognitive

- Make them think about it give them a/the pattern for how to think about it.
- Present a brief outline and summary of what you want them to learn.
- Assignments: reading; essays; exercises (including many programming assignments); question sheets
- Many back of the chapter exercises are of this sort.

Case-Based

<u>Show</u> them examples of it; <u>interact</u> with specific examples of it.

- Problems that begin by describing a scenario.
- Working through examples.
- Law is taught this way; and Medicine to some extent.

Brain-Based

- Involve them in <u>doing</u> it taking into account individual needs; learning styles; developmental stage.
- Some of our larger assignments / projects fall into this category.
- Practicum portions in medicine; teaching;
- Conservatory style learning in fine arts.

Constructionist

- Coach them on how to <u>learn</u> it ensure active engagement in authentic activity.
- Open-ended problems requiring learners to BUILD meaning; draw conclusions
- Inquiry fits primarily in this category
- Simply writing code is not, in and of itself, constructionist learning

INQUIRY -> EXPLORATION

Essential Elements for Inquiry

- Students drive content by asking questions.
- Instructors do NOT control, they guide.
- Learning is individualized for pace, depth, even content (up to a point).
- Formal exams are largely inappropriate.

Teachers must draw out and work with the pre-existing understandings that their students bring with them.

Inquiry Students must be permitted to pursue some topics in depth. Resist the temptation to cover topics by going a "mile wide and an inch deep". **Inquiry Based Learning** Katrin Becker

Emphasis is on developing metacognitive skills (higher order thinking - HOTS) as opposed to simple fact retention.

HOTS:Formal Reasoning Level:

- -Control of variables
- -Proportion
- -Compensation
- -Probability
- -Combinatorial
- -Hypothetico-deductive

Note: 25% of freshman CS students are still below the formal reasoning level on higher-order-thinking-skills.

This value has not changed since it started to be measured ~30 years ago.

What does this mean?
WE have to TEACH them.

Uses positioning questions to help guide learning.

Example: In what ways does knowledge of theory facilitate program design?

Provides opportunities for reflection, revision.

Work is often assessed several times before it is complete.

Work may often be resubmitted.

- Offers detailed feedback & critiques*(as opposed to right/wrong).
- Assessment is also used for learning.
- Requires greater investment of instructor's time for assessment.

*NOTE: critique is not just criticism

- Allows for discovery
- Often allows students to proceed at their own pace
- Often allows students to choose sequence
- Allows students to choose a learning style suited to them.

The Challenge:

- Great to have this freedom in a capstone course.
- Different story if the course is core or serves as a pre-requisite for something else:
 - Then we have an obligation to meet certain criteria.
- Also different story in the freshman and sophomore years – different expertise / experience.

Fitting Inquiry into a Traditional Curriculum

Course content is specified in terms goals and outcomes [not in terms of class time spent on a topic]:

- How will students demonstrate mastery of a topic?
- When finished, what will successful students be able to do?

Fitting Inquiry into a Traditional Curriculum

Final grade is built using a measure of mastery of the individual components.

Assessment must be competency-based rather than traditional tests that primary measure retention of facts.

Making it Work

- Students must know the goals and outcomes in advance.
- Instructor must be prepared to adapt to students needs, but do not make the goals into moving targets.

Making it Work

- Instructor must be prepared to speak on any topic in the course at any time (even without slides)
- Instructor must remain responsible for but not in control of the class.

Making it Work

- Get to know the students
- Trust them
- Set deadlines but remain flexible
- Be clear on what you want them to learn and why they should learn it.

References - 1

- (Parham, 2003) Parham, Jennifer, "Assessment and Evaluation of Computer Science Education", Journal of Computing Sciences in Colleges, Vol. 19, No. 2, Dec. 2003, pp 115-127
- (Ben-Ari, M. 2001) M. Ben-Ari, Constructivism in Computer Science Education, Journal
 of Computers in Mathematics and Science Teaching, 20(1), 2001. Pp. 45-73.
- (Smith, diSessa & Rochelle, 1993) Smith, J.P., di Sessa, A. A., & Rochelle, J. (1993) Misconceptions reconceived: A constructivist analysis of knowledge in transition, Journal of the Learning Sciences, 3(2), 115-163.
- (Boud and Feletti, (Eds) 1997) Boud, David, and Grahame Feletti, (Eds) 2E, "The Challenge of Problem-Based Learning", 1997 Kogan Page, ISBN 0-7494-2560-1
- (Bransford et. al., 2000) Bransford, et. al., Ed. National Research Council, "How People Learn: Brain, Mind, Experience, and School", Expanded Edition, 2000, National Academy Press, ISBN 0-309-07036-8
- (Davis, Barbara Gross, 2001), Davis, Barbara Gross, (2001), "Tools for Teaching",
 Jossey-Bass, ISBN 1-55542-568-2
- (Diamond, R. 1997) Diamond, Robert M., "<u>Designing & Assessing Courses & Curricula</u>: A Practical Guide", Revised 1997 ISBN 0-7879-1030-9 Jossey-Bass Inc.
- (Doll, 1993) Doll, William E. Jr. "A Post-Modern Perspective on Curriculum", 1993, Teachers College Press, New York, ISBN: 0-8077-3447-0

References - 2

- (Fink, 2003) Fink, L. Dee, "Creating Significant Learning Experiences: An Integrated Approach to Designing College Courses", 2003, Jossey-Bass ISBN 0-7879-6055-1
- (Gronlund, 2000) Norman E. Gronlund, "How to Write and Use Instructional Objectives", 6E Merrill, Prentice-Hall, 2000, ISBN 0-13-886533-7
- (Huba and Freed, 2000) Huba, Mary E. and Jann E. Freed, "Learner-Centered Assessment on College Campuses: Shifting the Focus from Teaching to Learning", 2000, ISBN 0-205-28738-7 Allyn & Bacon
- (Merriam and Caffarella, 1999) Merriam, Sharan B. and Rosemary S. Caffarella Learning in Adulthood: A Comprehensive Guide, 2E 1999 Jossey-Bass ISBN 0-7879-1043-0
- (Mintzes, Wandersee, and Novak, Ed., 1997) Mintzes, Joel J., James H. Wandersee, Joseph D. Novak, Ed., "Teaching Science for Understanding: A Human Constructivist View", 1997, ISBN 0-12-498360-X, Academic Press
- (Reigluth, C., 1983) Reigeluth, Charles M. Ed. "Instructional-Design Theories and Models: An Overview of Their Current Status, 1983, Lawrence Erlbaum, ISBN 0-89859-275-5
- (Reigluth, C., 1999) Reigeluth, Charles M. Ed. "Instructional-Design Theories and Models: A New Paradigm of Instructional Theory Volume II, 1999, Lawrence Erlbaum, ISBN 0-8058-2859-1
- (Taylor, Gilmer, and Tobin, Eds., 2002) Taylor, Peter C., Penny J. Gilmer, & Kenneth Tobin, Editors "Transforming Undergraduate Teaching: Social Constructivist Perspectives", 2002 Peter Lang Publishing (Counterpoints Vol 189) ISBN 0-8204-5293-9
- (Wiggins & McTighe, 1998) Wiggins, Grant and Jay McTighe, "Understanding by Design", 1998, ASCD Publications, ISBN 0-87120-313-8